Automated Segmentation of 3D US Prostate Images Using Statistical Texture-Based Matching Method
نویسندگان
چکیده
A novel statistical shape model is presented for automatic and accurate segmentation of prostate boundary from 3D ultrasound (US) images, using a hierarchical texture-based matching method. This method uses three steps. First, Gabor filter banks are used to capture rotation-invariant texture features at different scales and orientations. Second, different levels of texture features are integrated by a kernel support vector machine (KSVM) to optimally differentiate the prostate from surrounding tissues. Third, a statistical shape model is hierarchically deformed to the prostate boundary by robust texture and shape matching. Experimental results test the performance of the proposed method in segmenting 3D US prostate images.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملA Semi-Automated Algorithm for Segmentation of the Left Atrial Appendage Landing Zone: Application in Left Atrial Appendage Occlusion Procedures
Background: Mechanical occlusion of the Left atrial appendage (LAA) using a purpose-built device has emerged as an effective prophylactic treatment in patients with atrial fibrillation at risk of stroke and a contraindication for anticoagulation. A crucial step in procedural planning is the choice of the device size. This is currently based on the manual analysis of the “Device Landing Zone” fr...
متن کاملAn Efficient Method for Deformable Segmentation of 3D US Prostate Images
We previously proposed a deformable model for automatic and accurate segmentation of prostate boundary from 3D ultrasound (US) images by matching both prostate shapes and tissue textures in US images[6]. Textures were characterized by a Gabor filter bank and further classified by support vector machines (SVM), in order to discriminate the prostate boundary from the US images. However, the step ...
متن کاملAutomatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model
Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney, especially, when serial MR imaging is performed to evaluate the kidney function. This paper presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR images, by extracting texture features and statistical matching of geometrical shape of the kidney. A set of Wavelet...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل